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User recommendation aims at recommending users with potential interests in the social network. Previous

works have mainly focused on the undirected social networks with symmetric relationship such as friendship,

whereas recent advances have been made on the asymmetric relationship such as the following and followed

by relationship. Among the few existing direction-aware user recommendation methods, the random walk

strategy has been widely adopted to extract the asymmetric proximity between users. However, according

to our analysis on real-world directed social networks, we argue that the asymmetric proximity captured by

existing random walk based methods are insufficient due to the inbalance in-degree and out-degree of nodes.

To tackle this challenge, we propose InfoWalk, a novel informative walk strategy to efficiently capture

the asymmetric proximity solely based on random walks. By transferring the direction information into

the weights of each step, InfoWalk is able to overcome the limitation of edges while simultaneously main-

tain both the direction and proximity. Based on the asymmetric proximity captured by InfoWalk, we further

propose the qualitative (DNE-L) and quantitative (DNE-T) directed network embedding methods, capable of

preserving the two properties in the embedding space. Extensive experiments conducted on six real-world

benchmark datasets demonstrate the superiority of the proposed DNE model over several state-of-the-art

approaches in various tasks.
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1 INTRODUCTION

Recent years have witnessed the explosive growth of social networks, like Facebook,1 Twitter,2 and
Flickr.3 These social network platforms allow users to build connections with each other through-
out the world (i.e., making online friends). One crucial challenge is how to help users discover
their possible target users efficiently and accurately, which is also known as user recommendation
[19, 49]. Traditional recommendation algorithms such as similarity or “the friends of a friend are
likely to be friends” might not satisfy the users’ demand since the rich network structure infor-
mation is not fully explored. Hence, in this article, we investigate the social network structures’
intrinsic properties and devise a novel network embedding method to facilitate the recommenda-
tion procedure. More specifically, we address the user recommendation task from the perspective
of link prediction in the network data, which will benefit from network embedding techniques.
Network embedding aims at learning low-dimensional representations of nodes so that the prox-

imity between nodes in the original graph can be well preserved in the embedding space. Tasks
such as link prediction [51, 66] or recommendation [13, 60], node classification [20, 27], and com-
munity detection [4, 54] can all greatly benefit from the learned node representations. Although
network embedding has been widely investigated in graph analysis literature, it is non-trivial
to directly apply them in the recommendation scenario because most existing network embed-
ding methods have primarily focused on undirected networks. However, there are still many di-
rected networks in real-world applications, including social networks, gene-protein networks, and
author-paper citation networks, among others. Obtaining a good embedding for directed networks
is able to help in many research fields, including social recommendation [7], network evaluation
[21], and knowledge base interpretation [14]. Thus, our goal is to design a general method for effec-
tive node representation learning in directed networks applicable in recommendation scenarios.
The primary characteristic of the directed social network is the asymmetric proximity between

users, which is desired to be preserved in the latent embedding space. Given two users u,v in a
directed social network, the probability of user u reaching user v is different from the probability
of user v reaching user u due to the differences in node degree distributions and the number of
directed paths between them. It is critical for user recommendation to consider the asymmetric
proximity, especiallywhen the relationships between users arewith a single direction. For example,
the user u may have followed the user v while the user v does not follow user u. Only preserve
the proximity between users will make bi-direction recommendation, which is not satisfied in the
real-world scenario.
Although some existing methods have made attempts to preserve the asymmetric proximity in

the directed networks, we argue that the asymmetric proximity they captured is ill defined. Early
works [37] directly utilize a deterministic metric such as the Katz [23] score defined on the directed
network to capture the asymmetric proximity, which relies on matrix multiplication and cannot
scale to large datasets. Sun et al. [45] remove cycles from the network and then infer hierarchy

1https://www.facebook.com/.
2https://twitter.com/.
3https://www.flickr.com/.
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Fig. 1. An example of the random walk on a directed social network. The blue line denotes that random walk

successfully follows the direction of edges. The red dotted line denotes that random walk failed to follow the

direction of edges. Dangling nodes are nodes without out-edges. Best viewed on screen.

on the resulting incomplete network. Unfortunately, cycles widely exist in real-world networks
and carry valuable relational information among nodes. Inferring the incomplete network with-
out cycles will lose crucial relational information and result in suboptimal outcomes. Recent works
[25, 64] extend the randomwalk strategy from undirected networks to directed networks by requir-
ing the randomwalk to follow the direction of edges [64] or alternate between following and revers-
ing the direction of edges [25]. However, according to our statistics on real-world datasets (Figure
1 presents a toy example, and Section 3.3 provides a detailed analysis), we argue that such random
walk reachability suffers from the nodes (a.k.a. dangling nodes) without any outgoing edges and
the absence of directed paths between nodes. Therefore, capturing the asymmetric proximity and
effectively preserve the asymmetric proximity into embedding space demonstrate significant chal-
lenges for user recommendation in directed social networks while existing methods fail to do so.
To tackle the preceding challenges, in this article we first propose a novel informative walk

strategy named InfoWalk to capture the asymmetric proximity in the directed social network.
Intuitively, users who follow the same user will have similar interests (e.g., node D and nodeG in
Figure 1). The followers of one user are usually interested in the users he follows. InfoWalk captures
the preceding properties by enabling the reachability between users in the directed social network
with allowing the walk on the network to visit nodes from all directions, which overcomes the
limitations raised by the dangling nodes. During each step of the walk, the direction and proximity
information are stored in a weight on the step. As a result, InfoWalk outputs a weighted node
sequence where the asymmetric proximity can be easily inferred from it.
Given the asymmetric proximity between users captured by InfoWalk, we further propose a

directed network embedding method (DNE) with two variants: qualitative directed network em-
bedding (DNE-L) that preserves the discrete asymmetric proximity between nodes and quantita-
tive directed network embedding (DNE-T) that preserves the continuous asymmetric proximity
for embedding learning. Two independent embeddings are learned for each node by maximizing
the likelihood of observing directed graph context, which will be defined in the following section.
To evaluate the performance of our proposed directed network embedding method, we conduct
extensive experiments on six real-world datasets and compare DNE with several state-of-the-art
baseline methods. The experimental results of tasks, including node classification and link predic-
tion, demonstrate the effectiveness of our proposed DNE against existing algorithms.
We summarize the contributions of our article as follows:

(1) We develop a novel informative random walk strategy, InfoWalk, to efficiently cap-
ture the asymmetric proximity between users in the directed social network for user
recommendation.

ACM Transactions on Information Systems, Vol. 40, No. 2, Article 29. Publication date: November 2021.
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(2) We propose our directed network embedding method (DNE) with two variants, qualitative
and quantitative directed network embedding (DNE-L and DNE-T), to simultaneously
preserve the asymmetric proximity in the latent embedding space.

(3) We conduct extensive experiments on real-world networks to illustrate the advantages of
our DNE against state-of-the-art baselines.

The rest of the article is organized as follows. We first briefly review the most related user
recommendation and network embedding works in Section 2. Then we use a dataset analysis to
give the problem definition and background in Section 3. The proposed direction-aware random
walk strategy (InfoWalk ) and user recommendation methods (DNE-L and DNE-T) are introduced
in Section 4.4. The experimental results and discussions are presented in Section 5.7. Finally, we
conclude the article and present some directions for future work in Section 6.

2 RELATEDWORK

In this section, we will briefly review the related works of our proposed method, namely the user
recommendation and the network embedding.

2.1 User Recommendation

Recommendation techniques have been extensively studied in the past decades. Here, we will give
a simple review of different social recommendation methods.
Incorporating social relations has recently drawn massive attention in both academic [56, 57]

and industrial communities. Some traditional methods [17, 30] utilize content similarity (e.g.,
text similarity or visual similarity) or popularity to perform follower/followee recommendation.
Ma et al. [33] present a factorization method that shares a common latent space by ratings and
social relations. Yang et al. [58] factorize the social trust network and map users into truster and
trustee space for the recommendation. Fan et al. [12] unify probabilistic matrix factorization with
a neural network for social relation recommendation. More details of this category algorithms
could be found in the referred survey of Tang et al. [46]. Another branch of approachs model
the recommendation task as a ranking problem. For example, Ding et al. [11] employ a Bayesian
personalized ranking deep neural network to make user recommendations. Rafailidis and Crestani
[40] investigate location-based social recommendation via deep pairwise learning. Wang et al. [55]
design a neural social collaborative ranking recommender system. More recently, graph-based
recommendation has attracted researchers’ interest [6, 8, 50], and lots of models have been
proposed. Among them, Silva et al. [44] use a genetic algorithm to design a graph-based user
recommendation system. Lo and Lin [31] propose a weighted minimum-message ratio algorithm
for personalized user recommendation. Fan et al. [13] utilize graph neural networks [16] to jointly
model the interaction of a user-item graph. Wang et al. [56] divide the social relations into strong
ties and weak ties to facilitate the recommendation. Jamali and Ester [22] propose a random walk
model for combining trust-based and item-based recommendation. Chen et al. [7] model users’
exposure to social knowledge and consumption influence for the recommendation. In another
work, Chen et al. [10] conduct social recommendation with an informative sampling strategy.
In addition, Chen et al. [9] perform social recommendations based on users’ attention and
preference. Van den Berg et al. [1] utilize a graph autoencoder invariant to extract embeddings
from the user-item interaction graph. Ying et al. [60] propose an efficient graph convolutional
neural network to learn node representations for the web-scale recommendation. Monti et al.
[36] employ GNNs to learn representations for users and items, and then a diffusion process is
conducted with recurrent neural networks [18]. Unlike the methods mentioned previously, our

ACM Transactions on Information Systems, Vol. 40, No. 2, Article 29. Publication date: November 2021.
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proposed model focuses on investigating the directed network’s inherent properties to promote
the recommendation procedure, which is rarely studied in the literature.

2.2 Network Embedding

Network embedding methods focus on embedding the nodes in an existing network into a low-
dimensional vector space to understand semantic relationships between nodes better.
The proximity preserved in existing network embeddings comes from one of the two buckets:

deterministic metric and random walk results. LINE [47] is proposed for the large-scale network,
which preserves both first-order and second-order proximities to learn network representations.
GraRep[2] can be regarded as an extension of LINE, which considers higher-order proximity.
DNGR [3] utilizes denoising stacked autoencoder to learn nonlinear network representations with
high-order proximities preservation. SDNE [51] and DGE [65] incorporate graph structure into a
deep auto-encoder to preserve the highly nonlinear first-order and second-order proximities. The
proximity preserved in the preceding methods relies on the matrix multiplication of the adjacent
matrix, which is not scalable in large real-world datasets. To effectively calculate the proximity
between nodes, randomwalks on graphs have been widely used to apply on network data. Among
them, DeepWalk [38] and Node2Vec [15] employ a truncated random walk to generate node se-
quences, which is treated as sentences in language models and fed to the skip-grammodel to learn
the embeddings. In CARE [24], a custome community-aware random walk is proposed to consider
both first- and higher-order proximities as well as community membership information for each
node. The random walk results are also fed into the skip-gram model to learn node embedding.
All the approaches mentioned previously, however, are limited to dealing with undirected net-

works. To embed directed networks, one straightforward solution is ignoring the direction of edges
and applying the preceding undirected network embedding methods on the transformed network,
which may cause information loss, and the learned embedding method is faulty. Directed network
embedding is then put forward since edges in real networks are often associated with directions.
Random walk based network embedding methods, including Node2Vec [15] and DeepWalk [38],
can be applied to the directed network by guiding the walk with the directed edges. However, the
asymmetric proximity between nodes cannot be preserved by the skip-gram model. APP [64] is
then proposed by implicitly preserving the Rooted PageRank (RPR), another higher-order prox-
imity feature, in the embedding space. Each node is assigned with source embedding and target
embedding to preserve the observed random walk based graph context. HOPE [37] is proposed to
approximate asymmetric transitivity based on high-order proximity features (e.g., Adamic Adar
(AA), Katz Index (KI), Common Neighbors (CN)) with source and target embedding. However,
factorizing the asymmetric proximity matrix is unscalable. The preceding methods are also un-
dermined by the cycles in the directed network, and ATP [45] is then proposed to incorporate
both graph hierarchy and reachability information by constructing a novel asymmetric matrix. In
NERD [25], an alternating randomwalk strategy is proposed to walk alternately along and reverse
the direction of edges. Although such a strategy can walk along the inverse direction, the visited
nodes are limited, and the proximity captured is incomplete. Unlike the preceding methods that
preserve the high-order proximities, inspired by Newton’s theory of universal gravitation, Salha
et al. [42] recently proposed to learn node embedding by reconstructing asymmetric relationships.
Some other network embedding methods also incorporate side information like node attributes
[16, 27, 48, 66], signs of edgesc [26, 53, 61], and heterogeneous relationships [5], which also moti-
vates the development of embedding complex networks. Another branch of research that is closely
related to directed network embedding is the signed network embedding [52, 61]. Although both
types of networks have special type of edges, the difference lies in the information contained in
the edge. More specifically, the directed edge denotes the asymmetric proximity between nodes
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in the network, and the signed edges denote the edge type between nodes that is not necessary
to be asymmetric. As a result, such asymmetric proximity is the key characteristic of the directed
network, which should be preserved by the embedding method.

3 PRELIMINARIES

In this section, we first introduce some background of random walk based embedding methods,
then we analyze the drawback of vanilla random walk on real-world networks that motivated our
proposed method. Finally, we define the problem we studied in this article.

3.1 Background

Random walk is a popular method of deriving the relationship between nodes on network. Given
a start node, it first selects a neighbor of a node at random, moves to this neighbor, then keeps
selecting the neighborhood of the node and moves to it until it visits a predefined number of nodes.
The sequence of nodes selected this way is a random walk on the graph. The skip-gram model

originates from the languagemodel and recently extended to network data for embedding learning.
Given a sequence of nodes v1,v2, . . . ,vT , the objective of the skip-gram model is to maximize the
average log probability:

|V |∑
u=1

∑
−c≤j≤c, j�0

log p (vu+j |vu ), (1)

where c is the predefined size of the training context that is the distance on the node sequence
generated by random walk. The probability of observing the context node depends on their latent
embedding:

p (vu+j |vu ) = exp(hu · hu+j )∑
w ∈V exp(hu · hw ) , (2)

where hu is the embedding of node u. w represents nodes outside the window that are randomly
sampled from the node set. Above all, it is easy to find that the sequence generated by random
walk plays a central role in embedding learning, as the target is predicting the co-occurrence of
nodes on the sequence.

3.2 Definitions

Definition 1 (Directed Network). A directed network is defined as G = {V,E}, where V = {v1,
v2, . . . ,vN } denotes a set of nodes and N is the number of nodes. E is a set of direct edges between
nodes, Ei j = 1 if there exists a direct edge from node vi to node vj ; otherwise, Ei j = 0 andM = |E|
is the number of edges. The neighbor of node vi can be grouped into two sets named in-neighbor
N in
i and out-neighbor N out

i where ∀vj ∈ N in
i ,Eji = 1 and ∀vj ∈ N out

i ,Ei j = 1. The in-degree of

node vi is defined as dini = |N in
i | and the out-degree of node vi is defined as douti = |N out

i |.
Definition 2 (Directed Network Embedding). Given a direct network G = {V,E}, we aim at learn-

ing two independent lower-dimensional embeddings named source embedding hsi ∈ RL and target
embedding h

t
i ∈ RL for each node vi ∈ V to preserve the asymmetric proximity and hierarchy

in the embedding space. The source embedding and target embedding represent the preference of
sending and receiving edges for the node. L is the embedding dimension that satisfies L � N .

3.3 Dataset Analysis

In this section, we conduct a thorough analysis on five real-world directed networks to better un-
derstand the drawback of vanilla randomwalk on directed networks. For each node in the network,
we perform the random walk start from this node and the random walk stops when 40 nodes (if

ACM Transactions on Information Systems, Vol. 40, No. 2, Article 29. Publication date: November 2021.
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Fig. 2. Number of nodes visited by random walk on five real-world directed networks.

Fig. 3. Statistics of the length of vanilla random walk performed on five real-world directed networks.

possible) are visited by it. We repeat this 10 times and conduct statistic analysis on the visited
nodes and random walk length.
Figure 2 illustrates the number of nodes visited by random walk on five real-world directed

networks.
Although it satisfies the power-law distribution, we can observe that a considerable number of

nodes (marked as “Failed Random Walk”) are visited 10 times in the random walk, which means
that they are visited only once in the random walk starts from them and they terminate immedi-
ately. This refers to the dangling nodes without any out-neighbors; random walk fails to explore
the neighborhood information of these nodes and further affects the embedding of other nodes.
Figure 4 illustrates the length of random walk from all nodes. We can observe that many random
walks cannot walk to predefined walk length 40, and only 37.8% of nodes can walk to 40 nodes.
In other words, many random walks cannot well explore the local topology structure due to the
absence of a directed path between nodes.
Above all, we observe that many dangling nodes without out-degree exist in the directed net-

work. These nodes and the absence of a directed path between nodes limits the ability of visiting
nodes by randomwalk. It is necessary to overcome the limitation to capture the proximity between
nodes without directed paths and further improve the quality of embedding.

4 PROPOSED METHOD

In this section, we first develop an informative random walk strategy (InfoWalk) to capture the
asymmetric proximity between nodes in the directed network. We propose two unified methods
named qualitative directed network embedding (DNE-L) and quantitative directed network embed-

ding (DNE-T) to embed the asymmetric proximity into the embedding space. The notations used
in this section and the explanations are denoted in Table 1.

4.1 InfoWalk Strategy

As discussed in Section 1, the vanilla random walk on the directed network suffers from the ab-
sence of the directed path between nodes and the limitation of dangling nodes. To overcome the
limitation, we propose our informative random walk strategy (InfoWalk) in this section. The basic

ACM Transactions on Information Systems, Vol. 40, No. 2, Article 29. Publication date: November 2021.
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Table 1. Notations Used in This Article

Notations Explainations

Rvi Random walk start from node vi
h
s
i Source embedding of node vi

h
t
i Target embedding of node vi

N out
i Number of out-neighbor nodes

N in
i Number of in-neighbor nodes

ri,i+1 Direction-aware step weight in step i
si j Direction-aware score of between the i-th and j-th node in the random walk

ϕu,v Direction-aware weight between node u and node v
DCu Direction-aware context of node u

idea of InfoWalk is first to ignore the direction of edges and allow the random walk to visit nodes
from all directions. During each step of the random walk, the direction and asymmetric proximity
are stored in a carefully designed weight on the step. After the random walk reaches the specified
length, we get a step weighted node sequence that expresses asymmetric proximity between nodes,
which can be used for directed embedding learning.

Given a directed network G, we denote a random walk started from node vi as Rvi :

vi−→vj · · · −→vk , which is a sequence of visited nodes, and Rkvi denotes the node visited in the
k-th step in random walk Rvi . Suppose in the k-th step that the random walk arrives at node va :
Rkvi = a, and in the (k + 1)-th step, the random walk will uniformly walk to in-neighbor N in

a or

out-neighbor N out
a of node va :

P
(
Rk+1vi

= b |Rkvi = a
)
=
⎧⎪⎨⎪⎩

1
douta +d ina

Eab = 1 orEba = 1

0 otherwise
, (3)

Such a randomwalk can be viewed as walking on an undirected network that ignores the direction
of edges in G. By compromising the direction, the walk can reach nodes without a path in the
directed network and capture the asymmetric proximity. To capture the mixture of direction and
proximity between nodes, we further introduce a direction-aware step weight ri,i+1 on each step
vi ,vi+1 with the following rules:

ri,i+1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 ifEi,i+1 = 1 andEi+1,i = 0

−1 ifEi,i+1 = 0 andEi+1,i = 1

0 ifEi,i+1 = 1 andEi+1,i = 1

, (4)

where ri,i+1 = 1 denotes that the randomwalk follows the direction of the edge, ri,i+1 = −1 denotes
that the random walk step reverses the direction of the edge, and ri,i+1 = 0 denotes that there exist
directed edges in both directions between nodes vi and vi+1. The motivation behind this is that
the indicator ri,i+1 stores the direction transformation caused by each random walk step on the
directed network, which can be further used for inferring the direction of unobserved edges. For
a weighted directed network, ri,i+1 can be set by further multiplying the observed weight on the
edge, and we leave this as future work.
Given the weight ri,i+1 on each step, the result of InfoWalk can be represented as an edge

weighted node sequence: Rvi : vi
ri, j−→ vj

r j, j+1−→ · · · rk−1,k−→ vk . Based on the step weighted node
sequence, we define a score si,i+k of nodes vi and vi+k on the sequence as the sum of indicators r

ACM Transactions on Information Systems, Vol. 40, No. 2, Article 29. Publication date: November 2021.
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Fig. 4. Example of InfoWalk on a directed network. Red arrows denote steps that reverse the direction of

edges. Blue arrows denote steps that follow the direction of edges.

of each step between them:

si,i+k =
1

k

i+k−1∑
j=i

r j, j+1, (5)

where r j, j+1 is step weight j, and 1/k is used to normalize the impact from number of steps. Since
nodes with long distance from current node cannot provide useful information for embedding
learning and calculating scores for these nodes is time consuming, we follow the vanilla random
walk strategy and only calculate si,i+k with a small k . From the results of InfoWalk, the following
desired properties of a directed network for embedding learning can be inferred:

(1) Direction transition: Since each step weight r stores the randomwalk step follows or reverses
the edge’s direction, each step’s direction transition is also stored. As a result, the sign of
si,i+k denotes the direction between nodes: si,i+k > 0 denotes that observing node vi tends
to form a directed edge to node vi+k , si,i+k < 0 denotes that observing node vi+k tends to
form a directed edge to node vi , and si,i+k = 0 denotes that observing node vi tends to form
bi-direction edge to node vi+k . Figure 4 illustrates some typical examples of asymmetric
proximity captured by InfoWalk.

(2) Asymmetric proximity: InfoWalk can easily capture the asymmetric proximity since InfoWalk
walks on the network by ignoring the direction of edges, and nodes with higher in-degree
and out-degree will be visited more frequently. As a result, such nodes have a higher chance
of occurring in the window of other nodes.

4.2 Directed Network Embedding

In this section, we first define the directed graph context to clarify the target of embedding learn-
ing. We propose both qualitative directed network embedding (DNE-L) and quantitative directed

ACM Transactions on Information Systems, Vol. 40, No. 2, Article 29. Publication date: November 2021.
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Fig. 5. Overall framework of the DNE method. Given the direction-aware random walk on the directed

network, sequences of nodes are generated. The directed graph context is then defined based on the score

si j . The directed relationship between nodes is preserved by the source embedding and target embedding of

each node.

network embedding (DNE-T). For each variant, two independent embeddings named source embed-

ding hs and target embedding ht are learned to preserve the asymmetric proximity. The difference
between variants lies in how to preserve the asymmetric proximity. Figure 5 illustrates the basic
structure of DNE-L and DNE-T.

Definition 3 (Directed Graph Context). Given informative random walk results R on directed
network G, we define the directed graph context as follows: source context, target context, and
ambiguous context. The source context refers to nodes reached by the DNE method and has a
potential direct link to it. The target context refers to nodes reached by the DNE method and has a
potential direct link from it. The ambiguous context refers to nodes reached by the DNE method,
but the direction between them is ambiguous.

4.2.1 Qualitative Directed Network Embedding. The qualitative directed network embedding
methods preserve the asymmetric proximity by maximizing the likelihood of observing the di-
rected graph context node:

maxHs ,Ht

∑
u ∈V

∑
v ∈DCu

log P (v |u, su,v ), (6)

where DCu is the directed context of nodeu, and su,v is calculated by the DNEmethod. P (v |u, su,v )
is the probability of observing node v in the directed context of node u with score su,v , which can
be formulated as follows:

P
(
v |u, su,v > 0

)
=

exp
(
hsu · htv

)
∑

k ∈V exp
(
hsu · htv ) , (7)

P
(
v |u, su,v < 0

)
=

exp
(
hsv · htu

)
∑

k ∈V exp
(
hsv · htu ) , (8)

P
(
v |u, su,v = 0

)
=

exp
(
hsv · htu + hsu · htv

)
∑

k ∈V exp
(
hsv · htu + hsu · htv ) , (9)

where hs is the source embedding and ht is the target embedding. The probability of observing the
score is the dot product between source embedding of the nodeu and target embedding of the node
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v . When the score su,v = 0, node u and node v tend to form directed edges from both directions
between them. As a result, the probability is the sum of producing embedding from both directions.

4.2.2 Quantitative Directed Network Embedding. Intuitively, the directed graph context nodes
have different probability to be visited by InfoWalk from the centering node. Thus, it is reasonable
to weight the importance of contextual nodes based on their relative score su,v to the current node.
However, directly apply the score su,v to weight the importance is suboptimal for the following
reasons:

(1) The weight of context nodes with score su,v = 0 should have a positive weight instead of
zero.

(2) The weight of context nodes with score su,v = 0 but different random walk length should
have different weights.

To overcome the preceding limitations, we have to first reformulate the score score su,v for
weighted training. The weighting function should obey the following properties:

(1) π0 > 0,
(2) ∀m > n,πm > πn
(3) ∀i > j,π i

m < π j
m

where π i
m denotes the transformed weight of score m with length i . In this work, we use the

following transformation from score to weight:

πu,v = log
(su,v + 1
v − u + b

)
, (10)

where su,v is the score calculated in Equation (5), and b > 0 is a bias to ensure that the weight is
positive. The transformation ensures the following properties of the score:

(1) Nodes with larger score su,v will have larger weight πu,v ,
(2) Nodes with longer distance on the random walk will have smaller weight πu,v .

The source and target embedding can be learned by a weighted skip-gram optimization:

maxHs ,Ht

∑
u ∈V

∑
v ∈DCu

log P
(
v |u,πu,v )

=log
πu,v · exp (hsu · htv )∑
k ∈V exp

(
hsu · htv )

, (11)

4.2.3 Model Optimization. To improve the training efficiency, negative sampling and stochastic
gradient descent are used, and the objective can be formulated as follows:

LDNE−L = logσ
(
hsu · htv

)
+

k∑
i=1

Ew∼Pn (v )
[
logσ

(
−hsu · htw

)]
, (12)

LDNE−T = πu,v logσ
(
hsu · htv

)
+

k∑
i=1

Ew∼Pn (v )
[
logσ

(
−hsu · htw

)]
. (13)

4.3 Theoretical Analysis

In this section, we give a theoretical analysis of the asymmetric proximity captured by the InfoWalk

method. Given directed networkG, we use Ĝ to represent the undirected network that ignores the
direction of edges in directed network G.
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LetA be the adjacent matrix of directed networkG, and let Â be the adjacent matrix of Ĝ,which
can be formulated by

Â = A + AT − A ◦ AT , (14)

where ◦ is the Hadamard product. The transition probability matrix P can be formulated as P =

D̂
−1
Â, where D̂ is the diagonal degree matrix of undirected network Ĝ. The weight function of

each random walk step can be written as W = A − A
T . Since the score su,v is sum of the edge

weights of all the steps taken by the random walk, we first write the score in the iterative matrix
form as

S
1 = P ◦W, (15)

S
k = D̂

−1
S
k−1 + D̂−1Pk−1W. (16)

The formulation can be understood as adding weights from each neighborhood visited by the

last step (denoted as D̂−1Sk−1) with the weights by the next step (denoted as D̂−1Pk−1W) . The
expectation of the score between nodes that reach in after K steps can be written as

S
k =

k∑
i=1

P
i−1 (D̂−1W)Pk−i , (17)

where S is the score matrix, A is the transmission matrix, and ◦ is the Hadamard product. As the
proximity between nodes decreases as the randomwalk goes deeper, we introduce the attenuation
coefficient 1

k
with respect to the randomwalk length k . The overall asymmetric proximity between

nodes in the directed network can be written as

S =

T∑
k=1

1

k
S
k . (18)

The preceding equation shows the matrix form of the asymmetric proximity captured by InfoWalk,
which can be used to analyze the relationship with existing random walk based methods, and we
leave this as future work.

4.4 Complexity and Scalability

Given a directed networkG = {V,E}, we only need O ( |V |d ) space since we employ the stochastic
gradient update on the directed graph contexts generated by directed random walk. The time com-
plexity of DNE is O ( |V |drlk ) where |V | is the number of nodes, d is the dimension of embedding,
r is the number of walks per node, l is the walk length, and k is the number of iterations. Our
proposed DNE is efficient in both space and time, which can be applied on large-scale datasets.

5 EXPERIMENTAL EVALUATION

In this section, we conduct extensive experiments on several real-world network datasets to evalu-
ate the performance of our proposed DNE. We particularly consider the motivation and impact of
directed edges in social networks and the design direction aware user recommendation experiment
through empirical evaluation. We aim to answer the following research questions:

RQ1: How does DNE perform compared with state-of-the-art methods on user recommendation
tasks?

RQ2: Is it beneficial to overcome the limitation of a non-existing path and dangling nodes by
InfoWalk?

RQ3: How do the hyperparameters affect the performance of DNE?
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ALGORITHM 1: InfoWalk Strategy and the DNE Algorithm

Input: Directed network G = {V,E}, embedding dimension d , walks per node r , walk length l ,
window size k .

Output: Source embedding H
s and target embedding H

t

Initialize Hs ,Ht . Walks={}
for k=1 to r do

for vi ∈ V do

Perform informative random walk of length l start from node vi ;

Modify the step weight r on each step and append weighted sequence Rvi : vi
ri,i+1−→

vi+1−→ · · ·
rl−1,l−→ vl to Walks;

end for

end for

for walk ∈ walks do
for node pair (i,j) within window size k in walk do

Calculate the score si j ;
Randomly sample negative pairs (i,k );
Update Hs ,Ht with Equations (7), (8), (9) and (11);

end for

end for

Return H
s , Ht .

5.1 Experimental Settings

5.1.1 Dataset. We conduct experiments on several real-world social network datasets and bibli-
ographic networks with labels for each node. The social networks with directed edges are used for
evaluating user recommendations, whereas the bibliographic networks are used for user profiling.
It is worth noting that since collecting large-scale social networks with ground truth labels is hard,
we take the bibliographic network with directed edges instead. The statistics of datasets used in
our experiments are summarized in Table 2. We have the following:

• Slashdot networks: Slashdot is a technology-related news website in which the users can tag
each other as friends or foes. There are 77,360 users and 905,468 “friend/foe” relationships
between users in the dataset [29]. This dataset has been widely used for social network
analysis and user recommendation.
• Epinions network: Epinions is a who-trusts-whom online social network of the general con-
sumer review site Epinions.com. This dataset contains the “trust” relationship between users.
There are 75,879 users and 508,837 “trust” relationships in the dataset [41]. This dataset has
been widely used for trust user recommendation and social recommendation.
• Twitter network: Twitter is one of the most popular social network platforms globally. This
dataset contains the “following” relationship among users crawled from the network. There
are 90,908 users in the network and 443,399 “following” relationships in the dataset [32].
This dataset has been widely used for network analysis and social recommendation.
• LastFM network: Last.FM is a streaming radio service provider where users can search for
music and get a personalized recommendation. There are 136,420 users and 1,685,524 “fol-
lowing” links among the users in the dataset [62]. This dataset has been widely used for
music recommendations.
• Wiki-Vote network: Wikipedia is a free encyclopedia written collaboratively by volunteers
around the world. The users can vote for another to promote adminship, and this dataset
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Table 2. Statistics of Network Datasets Used in the Experiments

Dataset # Nodes # Edges # Labels % Dangling Node % Bi-directional Edges

Wiki 7,115 103,689 — 0.141 0.0565

Epinions 75,879 508,837 — 0.204 0.4052

Slashdot 77,360 905,468 — 0.271 0.8783

Twitter 90,908 443,399 — 0.087 0.6066

LastFM 136,409 1,685,524 — 0.439 0.0009

PubMed 19,717 44,338 3 0.803 0.0001

CoCit 44,034 195,361 15 0.451 0.0001

contains the vote data among users. There are 7,115 users and 103,689 “voting” relationships
from one user to another. This dataset [28] has been widely used for analyzing the “trust”
relationship in the online community.
• CoCit and PubMed networks: CoCit and PubMed [43] are two public bibliographic datasets.
Nodes represent the published paper, and edges represent the citation relationship between
them. Labels indicate the research categories that each paper belongs to. We conduct a node
classification experiment on these two directed networks to simulate the user profiling ex-
periments in social networks.

5.1.2 Baseline Methods. We compare our proposed method with several state-of-the-art di-
rected network embedding methods and user recommendation methods to evaluate our proposed
DNE. It is worth noting that we do not compare with the social network based user-item recom-
mendation method, as we focus on evaluating the performance of learned user/node embedding
in the directed graph:

• DeepWalk [38] and Node2Vec [15] are two popular random walk based network embedding
methods that can be used for modeling the relationship among users. However, these meth-
ods only preserve the proximity between nodes while ignore the direction of edges. We com-
pare these methods to demonstrate the importance of considering the direction of edges.
• APP [64] andNERD [25] are two randomwalk basedmethods designed for directed networks.
In APP, the random walk follows the direction of edges to capture the direction of edges.
However, such a strategy cannot deal with the dangling nodes and only preserve the ill-
defined asymmetric proximity. In NERD, the random walk alternates the direction between
steps. This strategy can somehow deal with dangling nodes, but the transitivity of direction
is ignored. We compare these two random walk based methods to show the advantage of
the strategy used in DNE.
• LINE [47], HOPE [37], and GraRep [2] are matrix factorization based graph embedding meth-
ods. These methods first generate the proximity matrix in different ways, then utilize matrix
factorization to get the low-dimensional representation. More specifically, LINE combines
the first- and second-order proximity, and HOPE utilize Katz distance [23] as the proximity
metric. GraRep employs the PPMI matrix between nodes as the proximity matrix and uses
SVD to learn node embeddings.
• ATP [45] is a three-step graph embedding framework that includes removing cycles in the
network, inferring the incomplete hierarchy on the reduced network, embedding learning
with SVD. Previous work [39] has proved that the skip-gram based method can be treated
as a variant of the matrix factorization method. We compare with the preceding matrix fac-
torization based methods to show the advantage of capturing the asymmetric proximity.
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Table 3. Parameter Setting of Baseline Methods

Method Parameter Setting

Node2Vec
walk_length=10,number_of_walks=10,window_size=4

p=0.25,q=2

DeepWalk walk_length=80,number_of_walks=10,window_size=4

LINE negative-ratio=5,order=first+second

GraRep K-step=4

Hope Similarity=Katz

APP
walk_length=80,number_of_walks=10,window_size=4

Negative=5, jump factor=0.15,alpha=0.0025

NERD
walk_length=80,number_of_walks=10,

Negative=5, rho=0.025,joint=1

ATP Rank=64, strategy=linear

Gravity epsilon=0.01(cora,citeseer2)/10(pubmed)

DNE num_walks=10,walk_length=10,window_size=10

• GraphSAGE [16] and GAT [48] are two popular graph neural network methods that are
widely used for graph embedding. These methods learn node embedding by aggregating
information from neighbored nodes. In directed networks, information can be aggregated
from in-neighbors.
• Gravity [42] is another directed network embedding method inspired by Newton’s theory of
universal gravitation. It learns an additional parameter of mass for each node, and directed
edges are formed from both mass and distance. However, during the aggregation of these
methods, asymmetric proximity is missed. We compare with the preceding graph neural
networks to demonstrate the effectiveness of our proposed method.
• GREED [34] and ShortWalk [63] are two random walk based directed network embedding
methods. Although they have tried to capture the asymmetric proximity between nodes in
the network, they fail to consider the dangling nodes, which results in incomplete proximity
preserved in the embedding.

5.1.3 Parameter Setting of Baseline Methods. Among baseline methods, Node2Vec, DeepWalk,
APP, and NERD are random walk based methods. To make a fair comparison, we set the random
walk parameters in these methods the same as our proposed DNE. More specifically, we set the
length of random walk as l = 10, window size as k = 4, and the number of walkers per node as
r = 10. For the Node2Vec method, the probability of Breadth-First Sampling (BFS) is set as 0.25,
and the probability of Depth-First Sampling (DFS) is set as 0.5. We use the inner product of the
embedded vectors to estimate the proximity between nodes. The APP, ATP, NERD, and HOPE
methods preserve the asymmetric proximity by learning the two independent source and target
embeddings. For tasks like node classification, we test the performance with both embeddings and
report the best results. LINE learns two embeddings for each node, namely context embedding
and node embedding. We also test both of them and report the best result. We use the open source
code from the authors and fine tune them with gradient search for all the baseline methods. We
implement the proposed DNE with PyTorch and TensorFlow. The model parameters are randomly
initialized with a Xavier initializer, and an Adam optimizer is employed for optimization. We set
the learning rate to 0.0005 and the batch size to 512. The vector dimension of all the methods is
128. The detailed parameter setting of baseline methods is listed in Table 3. All the experiments

ACM Transactions on Information Systems, Vol. 40, No. 2, Article 29. Publication date: November 2021.



29:16 S. Zhou et al.

are conducted on a Linux server with one NVIDIA Titan XP GPU and a 24-core Intel Xeon E5-2690
CPU. We have provided the PyTorch and TensorFlow implementation of DNE in GitHub.4

5.1.4 Detailed Evaluation Metric. In this section, we provide the details of the evaluation metric
used in our experiments. For classification task, Micro-F1 and Macro-F1 are used, which can be
defined as follows:

Precision =

∑
A∈C TP (A)∑

A∈C (TP (A) + FP (A))
, (19)

Recall =

∑
A∈C TP (A)∑

A∈C (TP (A) + FN (A))
, (20)

Micro-F1 =
2 ∗ Precision ∗ Recall
Precision + Recall

, (21)

Macro-F1 =

∑
A∈C Micro − F1(A)

|C | . (22)

In the formulas mentioned previously, TP(A), FP(A), and FN(A) represent the number of true pos-
itives, false positives, and false negatives in the instances that are predicted as A, respectively.
Suppose that C is the overall label set. Micro-f1(A) is the Micro-f1 measure for label A.

5.2 Vanilla User Recommendation (RQ1)

In this section, we conduct experiments on real-world social network datasets concerning vanilla
user recommendation tasks to evaluate the proposed DNE. As we discussed in Section 1, most of
the existing methods only preserve the proximity among nodes while failing to preserve the direc-
tion of edges. However, our proposed method (DNE) preserves both the proximity and direction
between nodes in a unified framework. To evaluate the performance of preserving the proximity
between nodes, we first conduct vanilla user recommendations that only predict edges between
nodes and ignore the direction of edges. We will test the performance of predicting edge direction
in the next section.

5.2.1 Experiment Setup. Following the same experimental procedure in many existing works
[66], we randomly hold out 30% of the existing links as positive instances in the test set and ran-
domly sample the same amount of non-existing links as negative instances. The residual network
is used to train the network embeddingmethods.We evaluate the user recommendation task in the
edge labeled dataset after learning the node embedding for each node/user in the network. Specif-
ically, we rank both positive and negative instances according to node/user embeddings’ cosine
similarity. To judge the ranking quality, we employ the AUC score [35] and mean average pre-

cision (MAP) score to evaluate the ranking list, and a higher value indicates better performance.
The train/test split is conducted independently five times, and we report the mean of results as the
final output.

5.2.2 Experimental Results and Analysis. Table 4 shows the vanilla user recommendation results
in five real-world social network datasets. We use “NA” to denote the situation that cannot run on
our hardware setup due to memory limitation or runtime over 1 week.
To summarize, we have the following observations from the experimental results:

(1) The basic observation is that our proposed DNE and two variants DNE-L achieve better
performance than the existing methods in most network datasets, which demonstrates the
effectiveness of capturing the asymmetric proximity in directed social networks.

4https://github.com/zhoushengisnoob/DNE.
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Table 4. Vanilla User Recommendation on a Real-World Dataset with Respect

to the AUC Score and MAP

Dataset Wiki Epinions Slashdot Twitter LastFM
Metric AUC MAP AUC MAP AUC MAP AUC MAP AUC MAP

Node2Vec 0.855 0.805 0.853 0.84 0.738 0.740 0.874 0.910 0.923 0.933
DeepWalk 0.69 0.638 0.585 0.584 0.390 0.4155 0.852 0.892 0.825 0.838
GraRep 0.905 0.893 NA NA NA NA NA NA NA NA
LINE 0.913 0.917 0.857 0.894 0.764 0.7909 0.791 0.8375 0.898 0.923
HOPE 0.93 0.948 0.889 0.924 0.777 0.8524 0.801 0.8417 NA NA
APP 0.919 0.907 0.898 0.928 0.868 0.8877 0.873 0.918 0.926 0.935
ATP 0.85 0.779 NA NA NA NA NA NA NA NA

Gravity 0.955 0.927 NA NA NA NA NA NA NA NA
NERD 0.517 0.565 0.818 0.872 0.832 0.8767 0.694 0.742 0.744 0.773

GraphSAGE 0.938 0.917 0.930 0.942 0.886 0.895 0.849 0.8875 0.948 0.950
GAT 0.839 0.785 0.786 0.776 0.631 0.569 0.821 0.862 0.909 0.914

GREED 0.793 0.725 0.633 0.543 0.720 0.712 0.650 0.666 0.826 0.828
ShortWalk 0.708 0.673 0.787 0.805 0.638 0.660 0.889 0.920 0.899 0.913
DNE-L 0.960 0.955 0.926 0.939 0.863 0.899 0.899 0.928 0.951 0.956
DNE-T 0.968 0.963 0.929 0.941 0.857 0.896 0.889 0.921 0.946 0.951
Impv% †0.8% †0.8% — — — †0.4% †2.9% †1.0% †0.3% †0.6%

Negative links contains the reverse direction of positive edges. NA denotes the methods that cannot run on our

hardware setup. † indicates that the result of a paired difference test is significant at p < 0.05.

(2) Among the baseline methods, some matrix factorization based methods cannot run on our
experimental settings. This is explainable since the matrix factorization is both time consum-
ing and memory consuming, which cannot scale to large-scale datasets.

(3) Another interesting observation is that graph neural network based methods achieve better
performance than random walk based baseline methods in preserving proximity. This is
explainable since the neighbored nodes play different roles in embedding learning for graph
neural network based methods, whereas the random walk based methods fail to do so.

5.3 Direction- Aware User Recommendation (RQ1)

We further evaluate the direction-aware user recommendation task to simulate the real-world sce-
nario where the recommendation direction should be considered. Given the social networks with
directed edges, recommending users to “follow/trust” is one of the critical applications in the real
world. The vanilla user recommendation task only predicts the existence of edges, which cannot
guarantee that the direction is also well predicted. For example, there exists a directed edge from
vi tovj but no edge fromvj tovi , and methods that predict edges from both directions can muddle
through the metric, as the positive link Ei j is already corrected predicted. However, the reverse
direction edge Eji may not be sampled as a negative link to penalize the reverse direction. Follow-
ing the experimental setting of existing methods, we also test the performance of the direction-

aware user recommendation task. A total of 30% of links are randomly sampled from the original
network as the positive links. The negative links contain two parts: randomly sampled from non-
existence edges in the original network and the non-existing reverse edges (if they exist) of positive
edges. Following the evaluation strategy of existing work [59], we use the AUC score5 and MAP to
evaluate the performance. The train/test split is conducted independently five times, and we report
the mean of results as the final output. Table 5 illustrates the performance of direction-aware user
recommendation and classic user recommendation on six real-world datasets.

5https://en.wikipedia.org/wiki/Receiver_operating_characteristic.

ACM Transactions on Information Systems, Vol. 40, No. 2, Article 29. Publication date: November 2021.

https://en.wikipedia.org/wiki/Receiver_operating_characteristic


29:18 S. Zhou et al.

Table 5. Direction-Aware Recommendation on a Real-World Dataset with Respect

to the AUC Score and MAP

Dataset Wiki Epinions Slashdot Twitter LastFM
Metric AUC MAP AUC MAP AUC MAP AUC MAP AUC MAP

Node2Vec 0.692 0.470 0.759 0.646 0.714 0.690 0.807 0.749 0.712 0.481
DeepWalk 0.603 0.403 0.574 0.478 0.400 0.401 0.788 0.74 0.662 0.452
GraRep 0.727 0.522 NA NA NA NA NA NA NA NA
LINE 0.722 0.512 0.761 0.672 0.744 0.740 0.739 0.690 0.698 0.477
HOPE 0.746 0.546 0.772 0.662 0.7546 0.789 0.807 0.740 NA NA

GraphSAGE 0.724 0.4763 0.806 0.687 0.854 0.829 0.789 0.739 0.696 0.444
GAT 0.677 0.4610 0.713 0.591 0.703 0.638 0.783 0.737 0.713 0.471
APP 0.698 0.449 0.803 0.711 0.833 0.813 0.807 0.762 0.614 0.369
ATP 0.863 0.698 NA NA NA NA NA NA NA NA

Gravity 0.812 0.603 NA NA NA NA NA NA NA NA
NERD 0.430 0.304 0.709 0.597 0.795 0.796 0.640 0.592 0.525 0.322
GREED 0.675 0.474 0.663 0.479 0.683 0.640 0.676 0.612 0.771 0.742

ShortWalk 0.628 0.430 0.711 0.615 0.624 0.617 0.814 0.753 0.699 0.475
DNE-L 0.849 0.678 0.816 0.694 0.837 0.837 0.842 0.812 0.864 0.732
DNE-T 0.887 0.751 0.826 0.714 0.832 0.837 0.839 0.816 0.872 0.732
Impv% †2.7% †7.5% †2.4% †0.4% — †0.9% †4.3% †8.9% †22.4% †52.1%

Negative links contains the reverse direction of positive edges. NA denotes that the methods cannot run on our

hardware setup. † indicates that the result of a paired difference test is significant at p < 0.05.

To summarize, we have the following observations:

(1) Among all the evaluated methods, our proposed DNE-L and DNE-T achieve the best perfor-
mance on all datasets with respect to two evaluation metrics, and we observe a significant
improvement over existing methods.

(2) Comparing the same method in Tables 4 and 5, we can observe that all methods have
decreased performance on direction-aware user recommendation. Further, methods that
learn single embedding perform worse than those capturing the asymmetric proximity. This
demonstrates the necessity of considering the direction of edges and asymmetric proximity.

(3) Comparing DNE-L with DNE-T, we can observe improvement in both of the two tasks. In-
terestingly, in direction-aware user recommendations, the improvement is more significant
than in classic user recommendations. This further indicates the importance of considering
the impact of direction in predicting the directed links between nodes.

5.4 User Profiling (RQ1)

User profiling is another important task of user modeling, especially in directed social networks.
The target of user profiling is to find the group to which users belong, which is the same as the
classic node classification task. Following the same experimental procedure in other works [2, 15],
we randomly sample a portion of labeled nodes (30%) for training and use the rest of the nodes for
testing. The learned embeddings are fed into the same SVM classifier, and we use Micro-F1 and
Macro-F1 scores to evaluate the performance. Formethods that learn two independent embeddings
for each node, we concatenate the embedding for evaluation.
Figure 6 illustrates the results on real-world datasets. To summarize, we have the following

observations:

(1) The basic observation is similar to the user recommendation task that our proposed DNE
achieves better performance than existing methods with respect to two evaluation metrics.

(2) We found that the undirected network embedding methods gain considerable performance
in classification tasks compared with directed network embedding methods.
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Fig. 6. User profiling experiment on the CoCit dataset with respect to micro-F1 score and macro-F1 score.

Fig. 7. Ablation study and scalability analysis of the proposedmethod. DR-DNE denotes DNEwith a directed

random walk. NH-DNE denotes DNE without direction.

(3) DNE-T does not gain too much improvement over DNE-L. This is explainable since the clas-
sification task is not very sensitive to the direction of edges.

5.5 Ablation Study (RQ2)

We further design a detailed ablation study to answer question RQ2. In other words, we remove
different components at a time and compare DNE with its special cases: DNE-R and DNE-H. Here,
DNE-R denotes that we force the random walk to follow the direction of edges, and we try to
prove the importance of visiting nodes from all directions. DNE-H denotes that the score of all
direct context nodes are the same, and we try to prove the importance of the direction. DNE-T
and DNE-L are two variants of DNE. Figure 7(a) illustrates the results of the ablation study. We
observe that the method with integrated asymmetric proximity outperforms DNE-R and DNE-H,
proving the benefits of capturing the asymmetric proximity.

5.6 Scalability (RQ3)

According to our theory, in Section 4.4, DNE scales linearly with the number of nodes. To verify
the scalability of DNE, we report the time of node representation learning on a different scale of
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Fig. 8. Hyperparameter tuning of DNE.

real-world networks. Figure 7(b) illustrates the results on the dataset. We empirically observe that
DNE scales linearly with an increase in the number of nodes.

5.7 Parameter Sensitivity (RQ4)

In this section, we examine how different choices of parameters affect the performance of DNE. For
network embedding methods, the fundamental parameter to tune is the dimension of learned em-
bedding. We examine three hyperparameters for our randomwalk strategy: windows size, number
of walks per node, and walk length. Figure 8 illustrates the parameter tuning results of the AUC
score of the direction-aware user recommendation task on six datasets. We observe that the perfor-
mance has minor changes on different windows size and walks the directed random walk length,
which shows that DNE is not very sensitive to these parameters. We observe that performance
tends to saturate once the representations’ dimension reaches around 64, which shows that DNE
is not very sensitive to the dimension of source/target embedding.

6 CONCLUSION

In this article, we explored utilization of the directed network structure information for user
recommendation. Specifically, we transformed the user recommendation problem into the link
prediction task and addressed it with network embedding techniques. We proposed a novel
random walk strategy (InfoWalk ) to efficiently capture the hierarchy and proximity between
nodes in a directed network. Two directed network embedding methods (DNE-L and DNE-T)
were proposed for embedding learning. Experiments on real-world social and citation networks
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showed that our proposed method is superior to the existing embedding methods in tasks
including link prediction and node classification.
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